Control Survey Report

For
Lehigh University

Table of Contents

Page
Introduction 1
Monumentation 1
Differential Leveling 1
Horizontal Control Survey 2
Quality Assurance/Quality Control 3
Conclusions 4
OPUS Projects Adjustment Report 8
Tables
Table 1. Level Loop Closure 2
Table 2. QA/QC Results 3
Table 3. Final Coordinates 5
Table 4. GNSS Vector List from Trimble Business Center 6

Appendices

University Monumentation Overall Map

Recovery Sheets

Lehigh University
 Northampton County, PA

Control Survey Report

Introduction

In May 2016, a request was made by Lehigh University to establish a network of eleven (11) permanent geodetic control monuments across all of the university's three campuses. These control monuments will be used to support future design and construction efforts ensuring that infrastructure improvements will be based on a consistent horizontal and vertical datum. Six (6) monuments ($\mathrm{P}-1-\mathrm{P}-6$) were set at the Asa Packer Campus; three (3) monuments ($\mathrm{M}-1-\mathrm{M}-3$) were set at the Mountaintop Campus; and two (2) monuments (G-1 and G-2) were set at the Goodman Campus. These monuments will be able to support both Global Navigational Satellite System (GNSS) surveys and conventional optical survey methods. Herbert, Rowland \& Grubic, Inc. (HRG) survey staff worked closely with Lehigh University personnel to select areas convenient to potential development, but also in places where the likelihood of disturbance was minimal. Due to the wooded nature of much of the project area and the limitations of GNSS positioning, special consideration was also taken to minimize the effect of overhead obstructions on GNSS satellite reception. A PA ONE CALL was performed to ensure that no underground utilities were disturbed by the installation of the monuments. Field work consisted of three (3) phases and took place between June 20, 2016 and August 3, 2016.

Monumentation

The first phase involved installing the monuments at eleven (11) pre-selected locations. The installation consisted of hand digging a hole 12 inches wide at the top, 18 inches wide at the bottom, and 48 inches deep, or to the depth of bedrock. The holes were then filled with concrete and a steel rebar was inserted for added strength. The concrete was of the pre-bagged type and was mixed with water to the proper consistency at each monument location. A bronze monument disk bearing the name of the university, the name of the campus, and the name of the monument was inserted into the top of the wet concrete. The top of the monuments were set flush with or slightly below ground level to prevent disturbance by mowing and other activities. The monument disk contains a rare earth magnet on its underside to aid in recovery with a magnetic locator. The surface of the concrete was finished in a way to minimize the likelihood of damage from freezing and vandalism.

Differential Leveling

The second phase of the project began after the concrete was allowed to cure for two weeks. At this time, a three (3) person survey crew established elevations at each monument. Elevations were established by differential leveling using a Trimble DiNi digital level and a pair of four (4) meter barcoded digital leveling rods. Differential leveling is the only reliable method to measure high accuracy elevations within a control network, especially due to the forested nature of much of the project area. The National Geodetic Survey (NGS) benchmark KV1791, also known as "LEHIGH" was used as vertical control. This benchmark is designated as having a first order elevation and is conveniently located in the center of the Packer Campus. Each monument was surveyed as part of a "closed level loop." Proper survey practice dictates keeping these level loops reasonably short; in this case less than 3 km in length. To accommodate this, temporary benchmarks or "Temp BMs" consisting of steel rebars with HRG survey caps were set and used to complete three (3) of the level loops. These were especially useful when leveling between the Mountaintop Campus and the Goodman Campus due to the distance between the two. Loop closures
were expected to pass NGS first order class 1 criteria to be accepted. Loop closures were not to exceed the values calculated using the formula 4 VF , where F is the length of the level loop in kilometers and closures are shown in millimeters. Observed loop closures, as well as maximum acceptable loop closures are shown in Table 1. All level loop misclosures were adjusted in the office using Trimble Business Center (TBC) software. The level loop adjustment essentially forces the loop closed and propagates the misclosure error throughout the level run. The expected accuracy at the end station of each level run is approximately one half of the raw misclosure value. The accumulated error of level loops performed in series, such as those performed in this survey, tend to become normally distributed, as errors in the positive direction offset errors in the negative direction and vice versa.

Table 1. Level Loop Closure

LEVEL RUN	STATIONS	LENGTH (km)	CLOSURE (mm)	MAX CLOSURE (mm)
1	$\mathrm{P}-4, \mathrm{P}-5, \mathrm{P}-6$	1.23	0.27	4.43
2	$\mathrm{P}-2, \mathrm{P}-3$	1.05	1.89	4.10
3	$\mathrm{P}-1$	1.92	1.04	5.54
4	Temp BM1	2.75	5.73	6.63
5	$\mathrm{M}-1, \mathrm{M}-2$	1.92	1.89	5.54
6	Temp BM2	1.88	0.50	5.48
7	Temp BM3	1.90	1.95	5.51
8	$\mathrm{G}-1, \mathrm{G}-2$	2.81	0.82	6.71

Horizontal Control Survey

The third phase of the project involved establishing horizontal coordinates on the monuments using GNSS. A combination of six (6) Trimble R8 and R10 GNSS receivers mounted on Seco brand fixed height tripods were used to occupy and observe the monuments. Before beginning the survey campaign, each tripod was inspected and calibrated to minimize setup error. The level adjustment of each tripod was also checked and corrected if necessary at the beginning of each observation. Start and stop times for each observation were recorded as well as the receiver serial number to aid in data processing. GNSS observations were performed simultaneously so that baseline vectors could be processed between each station forming a "static network." Network surveys of this type provide maximum accuracy and redundancy. Each monument was occupied between two and four times with occupation times varying from one to four hours in length. After field observations were performed, the GNSS data was downloaded from the receivers and processed using Trimble Business Center (TBC). At this time, the horizontal control data was obtained from the NGS. The Continuously Operating Reference Stations (CORS) NJHC, NJWC, and PASS were selected because of their proximity to the project and the fact that they surround the project area. It is desirable to use CORS stations that surround a project area because it enables the correction of atmospheric interference through interpolation rather than extrapolation. It was HRG's intent to use data from the CORS station located on the Mountaintop Campus known as LUMT. However, this was not possible because LUMT was not operational at the time of the control survey. After the CORS data and field data were combined in TBC, baseline vectors were processed and a series of least squares adjustments were performed. The first, a minimally constrained adjustment, only holds one CORS as control and tests the integrity of the network by demonstrating how much error is propagated throughout the network. It does so by comparing the observed values to the known values of the remaining CORS in the network. Once acceptable results are obtained from the minimally constrained adjustment, a fully constrained adjustment is performed holding the remaining two CORS as control also. It is then that the final coordinate values can be computed for the new control points. In addition to the GNSS processing performed using TBC, all of the GNSS field data was submitted to NGS's Online Positional

User Service (OPUS) Projects web utility. A similar network least squares adjustment was performed using OPUS Projects to provide a redundant check for the previously adjusted data. The attached OPUS Projects Network Adjustment report shows the coordinates and elevations obtained from OPUS. It is important to note that the OPUS coordinate and elevation values are for comparison purposes and should not be used as survey control. Table 3 is a listing of the final coordinates and elevations for the new Lehigh monuments.

On September 14, 2016, a return visit was made to the University to perform supplemental GNSS observations for and Quality Assurance/Quality Control (QA/QC) check observations. Because LUMT was operational at this time, it was able to be included in the GNSS network as a check; however, a significant duplication of efforts would have been required to fully incorporate LUMT into the network and hold it as control. It was found that the results of the network adjustment based on the CORS stations NJHC, NJWC, and PASS agree with the location of LUMT by 7 mm or .023 feet horizontally. This check is sufficient to conclude that the GNSS derived positions of the newly established control monuments are consistent with that of LUMT.

Quality Assurance/Quality Control

Before the coordinates and elevations for the new control monument could be accepted, QA/QC measures were taken. In order to check the consistency of the results of the monument survey, a series of quality control checkpoints were measured at each monument. A GNSS receiver was placed at monument M-3 to serve as a GNSS "base" station. Each monument was occupied with another GNSS receiver and observed for eight minutes using the Trimble "fast static" routine. The resulting GNSS vectors were then processed radially from $\mathrm{M}-3$ to calculate coordinates and elevations. Elevations were calculated at each checkpoint using Geoid 12B. This methodology is not intended to provide "control" level accuracy results. It merely serves as a check for gross survey blunders and calculation errors. The differences between the coordinates and elevations of the QA/QC checkpoints and the final coordinates and elevations are shown below. The error represented in the table is the result of short term satellite conditions and overhead obstructions at the time of the QA/QC survey. The long observation times and redundant observations performed during the GNSS network survey were more than sufficient to counteract these variables.

Table 2. QA/QC Results

Station	$\Delta \mathrm{H}$. (Inverse) Feet	$\Delta \mathrm{V}$. Feet	$\Delta \mathrm{H}$. (Inverse) Meters	$\Delta \mathrm{V}$ Meters
P-1	. 056	. 011	0.017	0.003
P-2	. 031	. 047	0.009	0.014
P-3	. 035	. 107	0.011	0.033
P-4	. 083	. 059	0.025	0.018
P-5	. 051	. 046	0.016	0.014
P-6	. 032	. 023	0.010	0.007
M-1	. 014	. 017	0.004	0.005
M-2	. 015	. 006	0.005	0.002
M-3	CONTROL			
G-1	. 012	. 000	0.004	0.000
G-2	. 034	. 002	0.010	0.001

Conclusions

The horizontal accuracy of control networks are defined by the NGS in terms of order. First order being the most accurate classification. The various order classes are defined by the distance accuracy ratio calculated using the equation $\mathrm{a}=\mathrm{d} / \mathrm{s}$, where $\mathrm{a}=$ the distance accuracy denominator, $\mathrm{s}=$ the propagated standard deviation of the distance between survey points, and $d=$ the distance between survey points. To achieve first order classification, a network must meet a ratio no less than 1:100,000. Using the horizontal precision and ellipsoid distance values shown in Table 4, the lowest ratio calculated was 1:203,552, clearly exceeding first order accuracy.

In an effort to preserve the integrity of the control network, measures must be taken to ensure the continued stability and observability of the monuments. This applies not just to the physical condition of the monuments, but also that of the surrounding area. Overhanging vegetation and manmade obstructions, such as signs and billboards should be minimized. Routine recovery and inspection should be performed periodically to monitor the condition of the monuments.

In the future, it is likely that NGS will be making adjustments to the coordinates and elevations published for both its CORS stations and passive benchmarks as it has in the past. Variables such as plate techtonics and crustal rebound mean that the relationship between the state plane coordinate system and the International Terrestrial Reference Frame (ITRF) is ever changing. In order to stay up to date, it will be necessary to evaluate the need to update the coordinates and elevations for the new Lehigh monuments from time to time. Only time will tell to what extent these adjustments will affect the practical function of this control, but it will be an important consideration in the years to come.

Table 3. Final Coordinates

	North American Datum of 1983 (NAD 83) State Plane Coordinate System, South Zone North American Vertical Datum of 1988 (NAVD 88)			
NAME	NORTHING (m)	EASTING (m)	ELEVATION (m)	
G-1	141775.552	802154.057	96.448	
G-2	141853.144	802696.363	98.363	
M-1	143398.610	801799.716	252.875	
M-2	143372.428	802155.431	263.477	
M-3	143483.897	802435.617	273.277	
P-1	143501.537	800400.007	202.159	
P-2	143912.276	800493.513	129.210	
P-3	144062.908	800455.955	108.355	
P-4	144308.674	800683.307	90.767	
P-5	144100.943	801026.805	109.805	
P-6	144293.695	801026.805	91.803	

NAME	NORTHING (sft)	EASTING (sft)	ELEVATION (sft)
G-1	465141.958	2631733.769	316.43
G-2	465396.522	2633512.984	322.71
M-1	470466.940	2630571.233	829.64
M-2	470381.041	2631738.277	864.42
M-3	470746.751	2632657.521	896.58
P-1	470804.626	2625979.024	663.25
P-2	472152.191	2626285.801	423.92
P-3	472646.390	2626162.580	355.50
P-4	473452.709	2626908.484	297.79
P-5	472771.178	2628035.442	360.25
P-6	473403.565	2628035.442	301.19

Table 4. GNSS Vector List From Trimble Business Center

Precision Confidence Level: 1-sigma							
Vector ID	From Point ID	To Point ID	Start Time	Duration	H Precision Meters	V Precision Meters	Ellip. Dist. Meters
PV163	G-2	G-1	8/1/2016 9:24	3:51:00	0.0003	0.0006	547.8462
PV150	G-2	G-1	8/2/2016 12:42	3:43:45	0.0003	0.0006	547.8513
PV168	G-2	G-1	8/3/2016 7:44	1:57:30	0.0004	0.0009	547.8501
PV164	G-2	M-3	8/1/2016 9:55	3:20:15	0.0005	0.0012	1651.531
PV133	G-2	M-3	8/3/2016 8:18	1:23:45	0.0007	0.0017	1651.529
PV157	G-2	M-3	8/2/2016 14:54	1:19:00	0.0011	0.0018	1651.521
PV56	M-3	M-2	8/3/2016 8:18	3:02:00	0.0003	0.0007	301.5583
PV103	M-3	M-2	8/1/2016 9:55	1:23:00	0.0004	0.001	301.5522
PV124	M-3	M-2	8/2/2016 14:54	1:13:45	0.0006	0.0009	301.551
PV211	NJHC	G-1	8/1/2016 9:24	4:03:00	0.0012	0.0061	40122.46
PV223	NJHC	G-1	8/2/2016 12:42	3:49:15	0.0015	0.0062	40122.47
PV237	NJHC	G-1	8/3/2016 7:44	2:05:00	0.0017	0.0091	40122.47
PV267	NJWC	P-3	8/2/2016 7:48	4:00:15	0.0012	0.0076	33281.31
PV282	NJWC	P-3	8/3/2016 11:47	2:59:30	0.0016	0.0081	33281.32
PV251	NJWC	P-3	8/1/2016 14:28	2:23:15	0.0021	0.0098	33281.32
PV35	P-1	M-1	8/1/2016 10:08	3:29:30	0.0006	0.0013	1403.538
PV38	P-1	M-1	8/1/2016 14:11	2:07:45	0.0007	0.0014	1403.54
PV39	P-1	M-1	8/1/2016 13:39	0:30:30	0.0011	0.0024	1403.541
PV18	P-2	P-1	8/1/2016 14:19	1:59:30	0.0006	0.0011	421.2689
PV71	P-2	P-1	8/2/2016 7:38	0:49:00	0.0007	0.0022	421.26
PV119	P-4	P-6	8/2/2016 8:14	4:01:15	0.0003	0.0007	343.8337
PV26	P-5	P-6	8/2/2016 8:44	3:31:15	0.0003	0.0008	192.7622
PV81	P-5	P-6	8/3/2016 10:25	3:34:30	0.0004	0.0008	192.7582
PV68	P-5	P-6	8/1/2016 15:07	1:53:00	0.0007	0.001	192.7528
PV70	P-5	P-2	8/2/2016 8:44	2:55:45	0.0005	0.0012	565.7033
PV84	P-5	P-2	8/3/2016 11:40	2:19:30	0.0007	0.0012	565.7024
PV8	P-5	P-2	8/1/2016 15:01	1:45:00	0.0008	0.0013	565.6987
PV69	P-2	P-3	8/2/2016 7:48	3:51:00	0.0003	0.0008	155.2524
PV60	P-2	P-3	8/3/2016 11:47	2:59:30	0.0004	0.0008	155.2463
PV108	P-2	P-3	8/1/2016 14:28	2:17:45	0.0005	0.0009	155.2472
PV160	G-1	M-1	8/1/2016 9:36	3:51:30	0.0005	0.0011	1661.346
PV169	G-1	M-1	8/3/2016 8:00	1:49:15	0.0007	0.0016	1661.352
PV144	G-1	M-1	8/2/2016 14:34	1:26:45	0.001	0.0017	1661.35
PV276	NJWC	P-6	8/2/2016 8:14	4:01:15	0.0012	0.0074	32703.49
PV284	NJWC	P-6	8/3/2016 10:25	3:40:30	0.0013	0.007	32703.5

Precision Confidence Level: 1-sigma							
Vector ID	From Point ID	To Point ID	Start Time	Duration	H Precision Meters	V Precision Meters	
PV253	NJWC	P-6	8/1/2016 15:07	1:59:00	0.0029	0.011	32703.5
PV24	P-5	M-2	8/2/2016 8:44	2:29:00	0.0007	0.0016	1343.371
PV80	P-5	M-2	8/3/2016 10:17	1:03:15	0.0011	0.0023	1343.378
PV233	NJHC	M-2	8/2/2016 7:12	4:00:30	0.0013	0.0067	40476.16
PV242	NJHC	M-2	8/3/2016 8:11	3:08:30	0.0014	0.0073	40476.16
PV220	NJHC	M-2	8/1/2016 9:45	1:32:45	0.002	0.0094	40476.16
PV224	NJHC	M-2	8/2/2016 14:43	1:24:30	0.0028	0.0123	40476.16
PV165	G-2	M-1	8/1/2016 9:36	3:39:30	0.0005	0.0012	1786.806
PV130	G-2	M-1	8/3/2016 8:00	1:41:45	0.0007	0.0018	1786.81
PV153	G-2	M-1	8/2/2016 14:34	1:26:45	0.0011	0.002	1786.808
PV14	KV1791	M-3	8/3/2016 8:36	2:49:45	0.0009	0.002	1853.446
PV12	KV1791	M-3	8/2/2016 14:54	0:55:30	0.002	0.004	1853.444
PV107	P-3	P-1	8/1/2016 14:28	1:51:00	0.0005	0.001	564.1731
PV43	P-3	P-1	8/2/2016 7:48	0:39:00	0.0007	0.0021	564.1701
PV58	P-3	KV1791	8/3/2016 11:54	2:33:15	0.0007	0.0014	244.2711
PV44	$\mathrm{P}-3$	KV1791	8/2/2016 11:32	0:16:45	0.0012	0.0042	244.2635
PV75	M-2	M-1	8/3/2016 8:11	1:49:30	0.0004	0.0009	356.6856
PV36	M-2	M-1	8/1/2016 9:45	1:32:45	0.0004	0.0009	356.695
PV101	M-3	M-1	8/1/2016 9:55	3:42:30	0.0003	0.0008	641.6193
PV78	M-3	M-1	8/3/2016 8:18	1:43:00	0.0004	0.001	641.6157
PV28	M-3	M-1	8/2/2016 14:54	1:07:30	0.0008	0.0012	641.6219
PV100	M-3	M-1	8/1/2016 13:39	0:17:15	0.0011	0.002	641.6186
PV167	M-2	G-2	8/1/2016 9:45	1:32:45	0.0007	0.0016	1612.768
PV131	M-2	G-2	8/3/2016 8:11	1:30:15	0.0007	0.0018	1612.772
PV151	M-2	G-2	8/2/2016 14:43	1:24:30	0.0011	0.0018	1612.77
PV255	NJWC	M-1	8/1/2016 9:36	4:01:45	0.0012	0.0065	32757.95
PV254	NJWC	M-1	8/1/2016 13:39	2:49:30	0.0018	0.0086	32757.95
PV281	NJWC	M-1	8/3/2016 8:00	2:01:00	0.0017	0.0095	32757.95
PV268	NJWC	M-1	8/2/2016 14:34	1:26:45	0.0028	0.0142	32757.95
PV313	PASS	P-1	8/1/2016 10:08	4:01:45	0.0028	0.0108	65821.92
PV312	PASS	P-1	8/1/2016 14:11	2:07:45	0.0034	0.0132	65821.93
PV328	PASS	P-1	8/2/2016 7:25	1:02:00	0.0047	0.0233	65821.93
PV122	M-1	M-2	8/2/2016 14:43	1:18:15	0.0006	0.001	356.6973
PV20	M-2	P-1	8/2/2016 7:25	1:02:00	0.001	0.0027	1760.231
PV349	M-3	M-2	9/14/2016 9:11	2:08:45	0.0004	0.0008	301.5601

Precision Confidence Level: 1-sigma							
Vector ID	From Point ID To Point ID	Start Time	Duration	H Precision Meters	V Precision Meters	Ellip. Dist. Meters	
PV358	P-5	P-6	$9 / 14 / 20169: 52$	$3: 36: 30$	0.0004	0.0007	192.7579
PV357	P-4	P-6	$9 / 14 / 20169: 52$	$3: 19: 30$	0.0004	0.0009	343.8383
PV352	P-5	$\underline{\text { M-2 }}$	$9 / 14 / 20169: 42$	$1: 38: 00$	0.001	0.0018	1343.382
PV347	P-1	M-2	$9 / 14 / 20169: 19$	$2: 00: 45$	0.0009	0.0018	1760.233
PV363	LUMT	P-4	$9 / 14 / 20169: 32$	$3: 39: 45$	0.002	0.0035	1930.849
PV374	NJHC	M-2	$9 / 14 / 20169: 11$	$2: 08: 45$	0.0018	0.0076	40476.16
PV390	PASS	P-1	$9 / 14 / 20169: 19$	$3: 05: 30$	0.0028	0.0107	65821.92
PV377	NJWC	P-6	$9 / 14 / 20169: 52$	$3: 36: 30$	0.0015	0.0068	32703.48
PV113	P-4	P-3	$8 / 2 / 20168: 02$	$3: 46: 30$	0.0003	0.0007	334.8112
PV366	LUMT	P-1	$9 / 14 / 20169: 19$	$3: 05: 30$	0.0012	0.0054	2066.24
PV161	G-1	P-1	$8 / 1 / 201610: 08$	$3: 19: 15$	0.0007	0.004	2460.928

Opus Projects Adjustment Report

```
SUBMITTED BY:
SOLUTION FILE NAME:
SOLUTION SOFTWARE:
SOLUTION DATE:
STANDARD ERROR OF UNIT WEIGHT:
TOTAL NUMBER OF OBSERVATIONS: 134989
TOTAL NUMBER OF MARKS: 16
NUMBER OF CONSTRAINED MARKS: 3
```

```
START TIME: 2016-08-01T00:00:00 GPS
```

START TIME: 2016-08-01T00:00:00 GPS
STOP TIME: 2016-09-14T18:13:30 GPS
STOP TIME: 2016-09-14T18:13:30 GPS
FREQUENCY: L1 -> ION-FREE (L6)
FREQUENCY: L1 -> ION-FREE (L6)
OBSERVATION INTERVAL: 30 s
OBSERVATION INTERVAL: 30 s
ELEVATION CUTOFF: 15 deg
ELEVATION CUTOFF: 15 deg
TROPO INTERVAL: 1800 s [STEP-OFFSET PARAMETERIZATION]
TROPO INTERVAL: 1800 s [STEP-OFFSET PARAMETERIZATION]
DD CORRELATIONS: ON
DD CORRELATIONS: ON

INCLUDED	SOLUTION	RMS	SOFTWARE		RUN DATE	
1) 2016-214	A	0.9 cm	page5	1509.10)	2016-0	9-15T11:40 UTC
2) 2016-214	B	2.0 cm	page5	1509.10)	2016-0	9-15T11:41 UTC
3) 2016-215	A	1.5 cm	page5	1509.10)	2016-0	9-15T11:44 UTC
4) 2016-215	B	1.9 cm	page5	1509.10)	2016-0	9-15T11:46 UTC
5) 2016-216	A	1.5 cm	page5	1509.10)	2016-0	9-15T11:48 UTC
6) 2016-216	B	1.0 cm	page5	1509.10)	2016-0	9-15T11:50 UTC
7) 2016-258	A	1.2 cm	page5	1509.10)	2016-0	9-15T11:53 UTC
BASELINE	LENGTH	RMS	OBS	OMITTED	FIXED	IN SOLUTION(S)
LUMT-M-3	0.087 km	0.6 cm	3773	8.7\%	100.0\%	7
P-3-P-2	0.157 km	0.7 cm	5379	19.2\%	98.9\%	2, 3, 6
P-6-P-5	0.194 km	0.8 cm	2133	15.2\%	100.0%	7
Lehigh-P-3	0.244 km	1.3 cm	1212	41.9\%	100.0%	6
M-3-M-2	0.302 km	0.6 cm	1727	8.9\%	100.0%	7
P-4-P-3	0.335 km	0.5 cm	2466	8.6\%	100.0\%	3
$\mathrm{P}-4-\mathrm{P}-5$	0.402 km	0.8 cm	2063	12.2\%	96.3\%	7

```


```

+++
MARK: Lehigh (Lehigh 1)

```

```

US NATIONAL GRID DESIGNATOR: 18TVK6799795200 (NAD 83)

```
```

+++
MARK: lumt (lumt a 1)

REF FRAME:		NAD 83 (2011)	(2010.0000)	IGS08 (2016.7039)		
X :		$122 \overline{5936.373 ~ m ~}$	0.001 m		1225935.506 m	0.001 m
Y:		-4692183.518 m	0.002 m		-4692182.082 m	0.002 m
Z:		4129095.711 m	0.002 m		4129095.669 m	0.002 m
LAT:	40	3605.74782	0.000 m	4	3605.78072	0.000 m
E LON:	284	3832.86610	0.000 m	284	3832.84587	0.000 m
W LON:	75	2127.13390	0.000 m	75	2127.15413	0.000 m
EL HGT:		251.322 m	0.003 m		250.073 m	0.003 m
ORTHO HGT:		285.714 m	0.013 m	h	- N WHERE $\mathrm{N}=$	D12B HGI)

 UTM COORDINATES STATE PLANE COORDINATES
 UTM (Zone 18) SPC (3702 PA S)
 4494593.463 m 143565.166 m
 EASTING (X) 469750.215 m 802465.188 m
CONVERGENCE -0.23268531 deg 1.55221348 deg
POINT SCALE 0.99961126 0.99996296
COMBINED FACTOR 0.99957185 0.99992354
US NATIONAL GRID DESIGNATOR: 18TVK6975094593 (NAD 83)

```
```

+++

```

MARK: \(\quad \mathrm{M}-1 \quad(\mathrm{M}-1 \quad 1)\)
```

REF FRAME: NAD_83(2011) (2010.0000)
X: 1225}306.451 m 0.001 m
Y: - 4602422.162 m

1. - -4692422.162 m 0.002 m
Z: 4128961.577 m 0.002 m
LAT: 40 36 00.93358 0.000 m
E LON: 284 38 04.37935 0.000 m
75 21 55.62065
NL
ORTHO HGT:
218.471 m 0.003 m
252.869 m 0.013
IGS08 (2016.5846)

1225305.586 m	0.001 m	
-4692420.729 m	0.002 m	
4128961.532 m	0.002 m	
40	3600.96634	0.000 m
28438	04.35915	0.000 m
75	2155.64085	0.000 m
	217.223 m	0.003 m

STATE PLANE COORDINATES
UTM COORDINATES
UTM (Zone 18)
SPC (3702 PA S)
NORTHING (Y)
4494447.770 m
143398.613 m
801799.714 m
EASTING (X)
469080.112 m
1.54707959 deg
CONVERGENCE
POINT SCALE
-0.23782869 deg
0.99996290
0.99961177
0.99992863
COMBINED FACTOR
US NATIONAL GRID DESIGNATOR: 18TVK6908094447 (NAD 83)

```
```

+++
MARK: M-2 (M-2 1)

```

```

US NATIONAL GRID DESIGNATOR: 18TVK6943494410 (NAD 83)

```
```

+++
MARK: M-3 (M-3 1)
REF FRAME:
X: 1225}916.483 m 0.000 m
NAD 83(2011) (2010.0000)
Y: -4692233.043 m 0.001 m
Z:
LAT:
E LON:
W LON:
EL HGT:
ORTHO HGT: 273.253 m 0.013 m (H = h - N WHERE N = GEOID12B HGT)
ll
4129026.481 m 0.001 m
0.000 m 40 36 03.17287 0.000 m
rrrrer.14010 0.000 m
.000 m 284 38 31.49495 0.000 m
0.000 m 75 21 28.50505 0.000 m
75 21 28.48483 m 0.000 m
238.860 m 0.002 m 237.612 m 0.002 m
UTM COORDINATES STATE PLANE COORDINATES
UTM (Zone 18) SPC (3702 PA S)

```
\begin{tabular}{lrrl} 
NORTHING (Y) & 4494513.186 m & 143483.899 m \\
EASTING (X) & 469718.139 m & 802435.618 m \\
CONVERGENCE & -0.23292610 deg & 1.55197002 deg \\
POINT SCALE & 0.99961129 & 0.99996293 & \\
COMBINED FACTOR & 0.99957384 & 0.99992546
\end{tabular}

US NATIONAL GRID DESIGNATOR: 18TVK6971894513 (NAD 83)
```

++
MARK: P-1 (P-1 1)
REF FRAME: NAD 83(2011) (2010.0000)
X: 1223922.357 m 0.001 m 1223921.491 m 0.001 m

```

```

Z: 4129035.286 m 0.001 m 4 % 0.001 m
LAT: 40 36 05.49017 0.000 m 40 36 05.52295 0.000 m
E LON: 284 37 04.98298 0.000 m 284 37 04.96274 0.000 m

```

```

EL HGT: 167.746 m 0.002 m 166.498 m 0.002 m
ORTHO HGT: 202.158 m 0.013 m (H = h - N WHERE N = GEOID12B HGT)
UTM COORDINATES STATE PLANE COORDINATES
UTM (Zone 18) SPC (3702 PA S)
NORTHING (Y) 4494594.193 m 143501.539 m
EASTING (X) 467684.777 m 800400.004 m
CONVERGENCE -0.24857254 deg 1.53637516 deg
POINT SCALE 0.99961285 0.99996296
COMBINED FACTOR 0.99958655 0.99993665
US NATIONAL GRID DESIGNATOR: 18TVK6768494594 (NAD 83)

```
```

+++
MARK: P-2 (P-2 1)
REF FRAME: NAD_83(2011) (2010.0000)
1223942.457 m 0.001 m
Y: -4692312.070 m 0.002 m
Z: 4129297.667 m 0.002 m
LAT: 40 36 18.72030 0.000 m
E LON: 284 37 09.42742 0.000 m 284 37 09.40720 0.000 m

```

```

EL HGT: 94.811 m 0.003 m 93.563 m 0.003 m
ORTHO HGT: 129.220 m 0.013 m (H=h - N WHERE N = GEOID12B HGT)
UTM COORDINATES STATE PLANE COORDINATES
UTM (Zone 18) SPC (3702 PA S)
NORTHING (Y) 4495001.678 m 143912.278 m
EASTING (X) 467790.993 m 800493.509 m
CONVERGENCE -0.24778761 deg 1.53717614 deg
POINT SCALE 0.99961277 0.99996313
COMBINED FACTOR 0.99959790 0.99994826
US NATIONAL GRID DESIGNATOR: 18TVK6779095001 (NAD 83)

```



US NATIONAL GRID DESIGNATOR: 18TVK6775895153 (NAD 83)
```

+++
MARK: P-4 (P-4 1)

```

```

US NATIONAL GRID DESIGNATOR: 18TVK6799295391 (NAD 83)

```
```

+++
MARK: P-5 (P-5 1)

```

```

 UTM COORDINATES STATE PLANE COORDINATES
 UTM (Zone 18) SPC (3702 PA S)
 4495173.579 m 144100.942 m
 468329.713 m 801026.800 m
 CONVERGENCE -0.24365660 deg 1.54130179 deg
POINT SCALE 0.99961235 0.99996320
COMBINED FACTOR 0.99960052 0.99995137
NORTHING (Y)
EASTING (X)
US NATIONAL GRID DESIGNATOR: 18TVK6832995173 (NAD 83)

```
```

+++

```
```

MARK: P-6 (P-6 1)
REF FRAME: NAD_83(2011) (2010.0000)
X: 1224400.764 m 0.001 m
Y: }\quad-4691916.319\textrm{m}\quad0.002\textrm{m
Z: 4129551.938 m 0.002 m
LAT: rran: 40 36 30.61704
E LON: 284 37 32.54021 0.000 m

```

```

N
ORTHO HGT:

```

```

 (H = h - N WHERE N = GEOID12B HGT)
 UTM COORDINATES
 UTM (Zone 18)
 NORTHING (Y)
4495366.172 m
468335.714 m
-0.24362534 deg
0.99961234
0.99960334
12244400.764 m
4129551.938 m 0.002 m

```

```

 IGS08 (2016.6276)
 1224399.899 m 0.001 m
 -4691914.886 m 0.002 m
 4129551.894 m 0.002 m
 Z
Z:
40 36 30.64982 0.000 m
91.827 m
STATE PLANE COORDINATES
SPC (3702 PA S)
144293.697 m
EASTING (X)
801026.799 m
CONVERGENCE
1.54134153 deg
POINT SCALE
0.99996328
COMBINED FACTOR
0.99995427
US NATIONAL GRID DESIGNATOR: 18TVK6833595366 (NAD 83)

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
CONSTRAINED MARKS
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
MARK: njhc (njhc a 2)
CONSTRAIN: 3-D TIGHT
ADJUST X: \(\quad 0.000 \mathrm{~m}(0.000 \mathrm{~m}) \quad \mathrm{Y}: \quad-0.000 \mathrm{~m} \quad(0.000 \mathrm{~m}) \quad Z: \quad 0.000 \mathrm{~m} \quad(0.000 \mathrm{~m})\)
ADJUST \(\mathrm{N}: \quad 0.000 \mathrm{~m}(0.000 \mathrm{~m}) \mathrm{E}: \quad 0.000 \mathrm{~m}(0.000 \mathrm{~m}) \quad \mathrm{H}: \quad 0.000 \mathrm{~m} \quad(0.000 \mathrm{~m})\)
REF FRAME: NAD_83(2011) (2010.0000) IGS08 (2016.5941)
\(\mathrm{X}: \quad 126 \overline{5} 124.859 \mathrm{~m} \quad 0.000 \mathrm{~m} \quad 1265123.991 \mathrm{~m} \quad 0.000 \mathrm{~m}\)
\(\begin{array}{lrrrrr}\mathrm{Y}: & -4689124.127 \mathrm{~m} & 0.000 \mathrm{~m} & -4689122.684 \mathrm{~m} & 0.000 \mathrm{~m}\end{array}\)
Z.
    \(4120558.335 \mathrm{~m} \quad 0.000 \mathrm{~m} \quad 4120558.292 \mathrm{~m} \quad 0.000 \mathrm{~m}\)
Z:
    \(\begin{array}{llrl}0.000 \mathrm{~m} & 4120558.292 \mathrm{~m} & 0.000 \mathrm{~m} \\ 0.000 \mathrm{~m} & 40 \quad 30 \quad 05.83777 & 0.000 \mathrm{~m}\end{array}\)
LAT:
        \(4030 \quad 05.80472\)
        \(40 \quad 30 \quad 05.80472\)
\(\begin{array}{lrlrlllll}\text { E LON: } & 285 & 05 & 55.98449 & 0.000 \mathrm{~m} & 285 & 05 & 55.96487 & 0.000 \mathrm{~m}\end{array}\)
\(\begin{array}{lrlrlllll}\text { E LON: } & 285 & 05 & 55.98449 & 0.000 \mathrm{~m} & 285 & 05 & 55.96487 & 0.000 \mathrm{~m}\end{array}\)
        \(\begin{array}{lrrr}0.000 \mathrm{~m} & 40 & 30 & 05.83777\end{array} \quad 0.000 \mathrm{~m}\)

    \(74 \quad 54 \quad 04.01551 \quad 0.000 \mathrm{~m}\)
EL HGT:
                    95.919 m
        0.000 m
0.000 m
                            \(94.660 \mathrm{~m} \quad 0.000 \mathrm{~m}\)
ORTHO HGT: \(\quad 129.785 \mathrm{~m} \quad 0.011 \mathrm{~m} \quad(\mathrm{H}=\mathrm{h}-\mathrm{N}\) WHERE \(\mathrm{N}=\) GEOID12B HGT)
            UTM COORDINATES
        STATE PLANE COORDINATES
            UTM (Zone 18)
        SPC (2900 NJ)
NORTHING (Y)
                4483438.406 m
    185284.900 m
EASTING (X)
    116002.513 m
\(\begin{array}{lrr}\text { CONVERGENCE } & 0.06422255 \mathrm{deg} & -0.26051470 \mathrm{deg} \\ \text { POINT SCALE } & 0.99960086 & 0.99991422\end{array}\)
POINT SCALE
    0.99991422
COMBINED FACTOR
                                0.99960086
        0.99958582
                        0.99989917
US NATIONAL GRID DESIGNATOR: 18TWK0837883438 (NAD 83)





\section*{STATION NAME}

NAD83(2011) PA SPC SOUTH ZONE NAVD 88 SURVEY FT.
\begin{tabular}{|c|c|c|c|}
\hline Northing & 465141.958 & \multirow{4}{*}{} & Elevation \\
\cline { 2 - 2 } Easting & 2631733.769 & 316.43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 METERS } \\
\hline Northing & 141775.552 & & Elevation \\
\hline Easting & 802154.057 & & 96.448 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Latitude & N \(40^{\circ} 35^{\prime} 08.02246 "\) \\
\hline Longitude & W 75 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Scale Factor \\
\hline 0.999944545 \\
\hline
\end{tabular}


Aerial imagery courtesy of PASDA and LVPC

\section*{G-1}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ STATION DESCRIPTION } \\
\hline \begin{tabular}{l} 
The station is a standard bronze disc set in a \\
poured concrete pier flush with ground level. The \\
disk contains magnetic material. The station can \\
be reached by traveling approximately 700 feet \\
east on Goodman Drive from the intersection with \\
Mountain Drive. The Station is 23.5 feet north of \\
the edge of the pavement.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Date Installed: & \(6 / 20 / 2016\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Survey Dates: & \(7 / 5 / 16-8 / 3 / 16\) \\
\hline
\end{tabular}

\section*{SURVEY METHODOLOGY}

The NAVD 88 orthometric height was obtained by differential leveling from the NGS benchmark KV1791 located on the Packer Campus of Lehigh University.The NAD 83 NSRS 2011, PA State Plane South Zone position was obtained through GNSS static network methods with referece to NGS CORS stations; NJHC,NJWC, and PASS







LEHIGH
\begin{tabular}{|c|c|c|}
\hline & & STATION NAME \\
\hline \multicolumn{3}{|l|}{NAD83(2011) PA SPC SOUTH ZONE NAVD 88 SURVEY FT.} \\
\hline Northing & 472152.191 & Elevation \\
\hline Easting & 2626285.801 & 423.92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{NAD83(2011) PA SPC SOUTH ZONE NAVD 88 METERS} \\
\hline Northing & 143912.276 & Elevation \\
\hline Easting & 800493.513 & 129.210 \\
\hline Latitude & N 40 \({ }^{\circ} 6^{\prime} 18.72021{ }^{\prime \prime}\) & Scale Factor \\
\hline Longitude & W 75 \({ }^{\circ} 2^{\prime} 50.57242{ }^{\prime \prime}\) & 0.999944545 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Date Installed: & \(6 / 22 / 2016\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Survey Dates: & \(7 / 5 / 2016-8 / 3 / 2016\) \\
\hline
\end{tabular}

\section*{SURVEY METHODOLOGY}

The NAVD 88 orthometric height was obtained by differential leveling from the NGS benchmark KV1791 located on the Packer Campus of Lehigh University.The NAD 83 NSRS 2011, PA State Plane South Zone position was obtained through GNSS static network methods with referece to NGS CORS stations; NJHC,NJWC, and PASS

Aerial imagery courtesy of PASDA and LVPC

\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ STATION NAME } \\
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 SURVEY FT. } \\
\hline Northing & 472646.390 \\
& Elevation \\
\hline Easting & 2626162.580 \\
& \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 METERS } \\
\hline Northing & 144062.908 & & Elevation \\
\hline Easting & 800455.955 & & 108.355 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Latitude & N 40³6'23.63462" & Scale Factor \\
\hline Longitude & W 75²2'51.99759" & 0.999944545 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Date Installed: & \(6 / 22 / 2016\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Survey Dates: & \(7 / 5 / 2016-8 / 3 / 2016\) \\
\hline
\end{tabular}

\section*{SURVEY METHODOLOGY}

The NAVD 88 orthometric height was obtained by differential leveling from the NGS benchmark KV1791 located on the Packer Campus of Lehigh University.The NAD 83 NSRS 2011, PA State Plane South Zone position was obtained through GNSS static network methods with referece to NGS CORS stations; NJHC,NJWC,and PASS


LEHIGH
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{c|}{ STATION NAME } \\
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 SURVEY FT. } \\
\hline Northing & 473452.709 \\
& Elevation \\
\hline Easting & 2626908.484 \\
& \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 METERS } \\
\hline Northing & 144308.674 & & Elevation \\
\hline Easting & 800683.307 & & 90.767 \\
\hline \multicolumn{3}{|c|}{} & \\
\hline Latitude & N 4036'31.40172" & Scale Factor \\
\hline Longitude & W 75 & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Date Installed: & \(6 / 23 / 2016\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Survey Dates: & \(7 / 5 / 2016-8 / 3 / 2016\) \\
\hline
\end{tabular}

\section*{SURVEY METHODOLOGY}

The NAVD 88 orthometric height was obtained by differential leveling from the NGS benchmark KV1791 located on the Packer Campus of Lehigh University.The NAD 83 NSRS 2011, PA State Plane South Zone position was obtained through GNSS static network methods with referece to NGS CORS stations; NJHC,NJWC,and PASS


LEHIGH


LEHIGH
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{c|}{ STATION NAME } \\
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 SURVEY FT. } \\
\hline Northing & 473403.565 & \\
\hline Easting & 2628035.442 & \\
\hline
\end{tabular} & 301.19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ NAD83(2011) PA SPC SOUTH ZONE NAVD 88 METERS } \\
\hline Northing & 144293.695 & & Elevation \\
\hline Easting & 801026.805 & & 91.803 \\
\hline Latitude & N 40`36'30.61699" & & Scale Factor \\
\hline Longitude & W 75 & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline Date Installed: & \(6 / 23 / 2016\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Survey Dates: & 7/5/2016-8/3/2016 \\
\hline
\end{tabular}

\section*{SURVEY METHODOLOGY}

The NAVD 88 orthometric height was obtained by differential leveling from the NGS benchmark KV1791 located on the Packer Campus of Lehigh University.The NAD 83 NSRS 2011, PA State Plane South Zone position was obtained through GNSS static network methods with referece to NGS CORS stations; NJHC,NJWC, and PASS

Aerial imagery courtesy of PASDA and LVPC


PHOTO (Looking West)
```

